

ECOTOXICITY TO SALTWATER ORGANISM AND CYTOTOXICITY OF BIOGENIC SYNTHESIS OF REDUCED GRAPHENE OXIDE-SILVER NANOCOMPOSITE

Dharshini Perumal¹, Che Azurahanim Che Abdullah^{1,2,3*}, Nur Khalida Rahayu Zainon¹, Emmellie Laura Albert², Norazalina Saad³

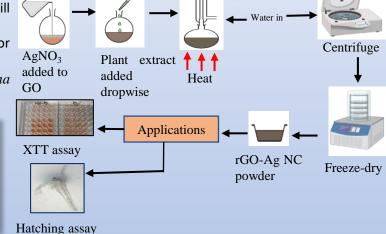
¹Biophysics Laboratory, Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

²Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

³UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia

*Corresponding author's e-mail: azurahanim@upm.edu.my

INTRODUCTION

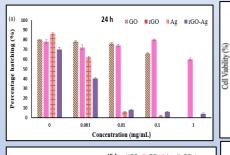

- ❖Carbon NPs and metal NPs are becoming popular in various fields
- ❖ Nanocomposites incorporating metal NPs and carbon nanomaterials will enhance biological application
- ❖The release of NPs into the environment as a result of manufacture or application will impact the aquatic animals
- ❖The eco-toxicity was conducted towards aquatic species (*Artemia salina* cysts) and cytotoxicity on human adenocarcinoma cell lines

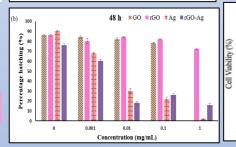
Objectives

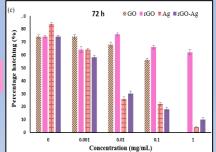
- ❖To synthesize reduced graphene oxide (rGO)- silver (Ag) nanocomposite (rGO-Ag NC) using *Clinacanthus nutans* leaf extract.
- ❖To assess the *in vitro* cytotoxicity of the synthesized sample towards lung (A549) and epithelial colorectal (Caco2) adenocarcinoma cell line using the XTT assay.
- ❖To evaluate the toxicity of the synthesized samples towards brine shrimp cysts (A. salina) using hatching assay.

METHODOLOGY

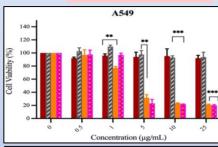
CONCLUSION

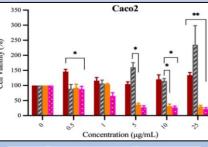

- •rGO-Ag NC have more pronounced inhibitory effect on the Caco2 cell viability compared to A549 cell lines
- •rGO-Ag NC exhibits a higher hatching rate at low concentration

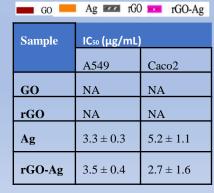

ACKNOWLEDGEMENTS



RESULTS AND DISCUSSION


Hatching assay





XTT assay

